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Abstract: This paper explores the proposed benefits of ΔP (delta P) as a measure
of collocation strength. Its focus is on contrasting ΔP with other, more commonly
used, association measures, particularly transitional probabilities, but also
mutual information and Lexical Gravity G. To this end, first the strong correla-
tion between ΔP and transitional probability is illustrated with the help of two
exemplary corpora. This is followed by an analysis of hesitation placement in
spontaneous spoken English, based on the assumption that hesitations will not
be placed within strong collocations. Results show that, despite their strong
similarity, in some contexts ΔP is more predictive of hesitation placement than
transitional probability. Yet neither ΔP nor any of the other association measures
emerges as the universally best predictor. On the basis of these results, it is
suggested that studies should always rely on several association measures.
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1 Introduction

This paper is dedicated to ΔP (delta P), a unidirectional dependency measure. It
first appears in the literature as a means to model the outcome of judgment tasks
(cf. e.g. Jenkins and Ward 1965; Ward and Jenkins 1965; Allan 1980), but, as we
will see below, recent studies suggest that it may also be used for modelling
language learning and for collocation strength testing. In this paper, I will focus
on the latter application and evaluate the benefits of ΔP as a measure of
collocation strength. Of course, there are already a number of other measures
of collostruction strength which have been systematically compared elsewhere
(cf. e.g. Evert 2004; Kapatsinski 2005; Jurafsky and Martin 2008; Wiechmann
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2008; Pecina 2010), yet ΔP promises great potential at relatively low computa-
tional cost.

In essence, ΔP is a measure of cue validity, i.e. it measures how strongly two
events are linked. Thus it evaluates how reliably a specific event1 triggers
another specific event2, simultaneously taking into account how likely event2
is to occur after any other eventn. In terms of the most famous contingency
learning experiment, namely Pavlov’s dogs, ΔP aims to help us understand the
conditions necessary to train the dog to salivate at the sound of a bell: according
to ΔP, the more likely a reward of food is to follow the sound of a bell and the
less likely food is provided under any other circumstances, the more strongly the
bell and food will be cognitively linked for the dog and thus the more likely the
experiment will be successful (see also explanation of a “good cue” in Ellis and
Ferreira-Junior 2009: 197). Humans may develop similar cognitive links between
words which tend to occur together – though rather than drool, humans tend to
think of another word upon hearing a verbal stimulus.

Ellis (2006) advocates that ΔP be used in models of L1 and L2 acquisition,
based on evidence that ΔP theory accurately predicts human estimation experi-
ments (Ellis 2006: 11–12; cf. also Shanks 1995) and that it closely models the
associative learning processes in humans and animals. Ellis and Ferreira-Junior
(2009: 202) show that this also holds true for language learning by providing
evidence that ΔP almost perfectly predicts which verbs learners will use first in a
newly acquired construction.

Gries (2013) goes one step further and proposes that ΔP be used as a
measure of collostruction strength. He sees ΔP’s great potential for corpus
linguistics in its unidirectionality, its ease of calculation (for both see the
discussion of its calculation below) and the existing evidence that it reflects
psychological and psycholinguistic reality (Gries 2013: 143–144). This proposal
to lift ΔP from its accustomed domain of experimental studies and to apply it to
corpus linguistic research entails transferring ΔP from the analysis of processes
to analyses of states, i.e. while studies on contingency learning tend to focus on
the stages or sequences in the learning process, studies of collocations are
generally totally synchronic in that they determine collocation strengths at a
single point in time. As corpora are usually much larger than experimental data,
this transfer furthermore entails a huge increase in the size of the data sets ΔP is
applied to. This paper assesses the performance of ΔP in corpus data by compar-
ing it to the performance of other measures of association.

The paper is structured as follows: Section 2 first discusses the link between
collocation strength and linguistic models of the mind. It briefly outlines the
kinds of processing effects that have been modelled with other measures of
collocation strength before investigating whether ΔP has the potential to
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compete with these measures. To this purpose, it explains the formula for the
calculation of ΔP and – based on its application to two exemplary corpora –
demonstrates how the measure is influenced by the size of the database. Results
illustrate that ΔP differs little from transitional probability when calculated for a
large database. Thus the question arises whether we can do away with ΔP in
cognitive corpus linguistics and stick to tried and trusted transitional probabil-
ity. The section concludes by showing that previous studies fail to answer this
question. Section 3 presents the data and method of a set of analyses which aim
to fill this gap by comparing the performance of ΔP in predicting hesitation
placement in spoken American English to the performance of a set of other
measures of collocation strength, including transitional probability. These ana-
lyses will be presented in Section 4 and discussed in Section 5.

2 Corpus, collocation and cognition

2.1 Collocations as cognitive structures

According to the simplest definitions, a collocation is not much more than a
group of words which occur together frequently or at least more frequently than
expected by chance (see, for example, the definition of a “lexical bundle” in
Biber et al. 1999: 989; for a more detailed discussion see Gries 2013: 138–139). In
this respect, ΔP is just the latest method to assess such co-occurrence rates.
However, collocations are rarely extracted purely for the purpose of statistical
assessment.

Usage-based and connectionist models of the mind assume that linguistic
items are connected on various levels and that these connections are created and
strengthened through usage so that a network emerges (cf. e.g. Eikmeyer et al.
1999; Langacker 2000; Croft 2001; Fillmore et al. 2003; Fried and Östman 2004;
Beckner et al. 2009; Bod 2010; Bybee 1998). Depending on the model, strong
collocations can either be represented by strong connections between the nodes
representing the collocates (cf. e.g. Phillips 1983; Rumelhart and McClelland 1986;
Elman 1990; Brezina et al. 2015) or (additionally) by a node which represents the
entire collocation as a “prepackaged unit” (Bybee and McClelland 2005: 384;
Biber et al. 1999; Wray 2002), which is then often referred to as a “chunk” (e.g.
Bybee 2006; Bybee 2010) or a “construction” (e.g. Goldberg 2005).1

1 For a discussion of the differences and (potential) mutual benefits of chunking and non-
chunking models, see Perruchet and Pacton (2006).
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Thus a collocation as an instance of language use is both a reflection of these
mental representations as well as new input, which may alter connection
strengths or representation strengths. This is evident from a number of production
and comprehension effects. It has been shown that phonetic reduction increases
in frequent or predictable collocations (cf. Jurafsky et al. 1998; Gregory et al. 1999;
Bybee 2002; Bell et al. 2003; Bybee and Scheibman 2007; Bresnan and Spencer
2013). Strong collocations are also less likely to be disfluent (cf. Beattie and
Butterworth 1979; Shriberg and Stolcke 1996; Bybee 2007b; Schneider 2014;
Schneider 2016) and are read faster (cf. Frisson et al. 2005; Reali and
Christiansen 2007). Furthermore, in experiments participants are faster to judge
a strong collocation as acceptable than a weak one (cf. Ellis et al. 2008; Arnon and
Snider 2010), but with increasing collocation strength it becomes harder for them
to identify the individual words in the collocation (cf. Vogel Sosa and MacFarlane
2002; for more complex findings see also Kapatsinski and Radicke 2009).

However, so far, there is no “gold standard” to measure the strength of a
collocation. Evert (2004), Wiechmann (2008) and Pecina (2010) each compare up
to 80 measures of collocation strength which have been used to date. These
range from simple co-occurrence frequency to complex comparisons between
observed and expected occurrence rates. This means that today each new
measure on the market has to compare to the performance of those already in
use. Additionally, as per Occam’s razor, we should avoid making any super-
fluous assumptions. Thus the ideal measure of collocation strength is the one
which most accurately models processing effects. Should several perform on
par, the one based on the fewest assumptions is preferable. Therefore, the
purpose of the present paper is to gauge both the complexity and the perfor-
mance of ΔP as a measure of collocation strength.

2.2 Delta P as a measure of collocation strength

Table 1 and the formulae below explain the calculation of ΔP. Due to it being a
unidirectional measure, there are two formulae, one for forward-directed ΔP and
one for its backward-directed counterpart.

ΔP forward =
a

a + b
−

c
c+d

(1)

ΔPbackward =
a

a+ c
−

b
b+d

(2)

As explained above, from a statistical point of view, the first part of the formula
describes the probability of a specific event2 given another specific event1, while
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the second part describes the probability of event2 in the absence of event1
(cf. Ellis 2006: 11). In the formula for ΔPbackward, the roles of the two events
are reversed.

When these [the two parts] are the same, when the outcome is just as likely when the cue is
present as when it is not, there is no covariation between these two events and ΔP=0. ΔP
approaches 1.0 as the presence of the cue increases the likelihood of the outcome and
approaches −1.0 as the cue decreases the chance of the outcome – a negative association.
(Ellis 2006: 11)

Thus we expect values of ΔP between −1 and 1. In order to see whether this is the
case when ΔP is calculated based on corpus data, we will apply the measure to
all two-word pairs (i.e. bigrams) in Lewis Caroll’s Alice’s Adventures in
Wonderland, first published in 1865, as well as to those in Herman Melville’s
Moby Dick, first published in 1851.2 Figure 1 shows the results: despite the fact
that ΔP was calculated across sentence boundaries (where we would expect
weak collocations), it only takes on values between −0.07 and 1, and only 3.9%
of bigram types receive scores below zero. This is no singularity owing to any
particular characteristic of the two novels. It is corroborated by Gries’ calcula-
tions of ΔP for 262 word pairs taken from the spoken part of the British National
Corpus (Gries 2013: Figure 2; see also Schmid and Küchenhoff 2013: Table 9
where transitional probabilities between words and constructions, referred to as
“reliance” and “attraction”, are compared to the corresponding values of ΔP).

An interpretation of the formulae from a corpus-linguistic point of view
gives a first indication why the data might be heavily skewed towards positive

Table 1: Components of measures of association (adapted from Allan 1980;
Gries 2013: 140).

+ word y − word y Total

+ word x a b a+b
− word x c d c+d
Total a+ c b+d a+b+ c+d

2 These novels were selected as test corpora due to their comparatively small size (by current
corpus standards) which cuts down computation times and makes it possible to plot all data-
points in a single plot without R (R Development Core Team 2009) running into serious
difficulties. Furthermore, as Table 2 shows, Moby Dick is roughly ten times the size of Alice’s
Adventures in Wonderland, so the effect of corpus size can also be taken into consideration.
Both novels were extracted from Baayen’s (2009) packet languageR for R with punctuation
already removed. Capitalisation was ignored for the purposes of calculation.
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values. From this perspective, the components of the formulae take on the
following meanings:

ΔP forward =
FrequencyBigram

FrequencyWord1
−
FrequencyWord2 − FrequencyBigram

Corpus Size − FrequencyWord1
(3)

ΔPbackward =
FrequencyBigram

FrequencyWord2
−
FrequencyWord1 − FrequencyBigram

Corpus Size− FrequencyWord2
(4)

It now becomes evident that the first component of each formula is actually the
formula for calculating the corresponding transitional probability, i.e. in eq. [3]
it is forward transitional probability and in eq. [4] it is backward transitional
probability.

We could thus describe ΔP as transitional probability minus an adjustment
factor (i.e. c/(c+d) in eq. [1]), which increases the more often word2 occurs
without word1 (i.e. c in Table 1), as illustrated by the first panel in Figure 2.
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Figure 1: Distribution of values of ΔPforward when calculated for all bigrams in the corpora.

Table 2: The two novels used as corpora.

Novel Word tokens Word types Bigram types

Alice’s Adventures in Wonderland , , ,
Moby Dick , , ,
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The second and third panels of Figure 2 show that the adjustment is also
strongly correlated with the frequency of the second word but not with the
frequency of the collocation (i.e. the bigram). Yet, no matter how frequent the
second word or the entire collocation is, the adjustment never reaches values of
more than 0.065. This is due to the overpowering denominator: the corpus size,
which is part of the denominator, will always be vastly higher than any other
number in the formula and thus keep the adjustment factor small.

In summary, ΔP is transitional probability minus a small adjustment,
which “punishes” pairs whose second word also frequently occurs in other
combinations. As transitional probabilities can only take on values between 0
and 1 (i.e. a probability between 0% and 100%), and the adjustment factor
varies between 0 and 0.065 when calculated over an entire corpus, ΔP varies
between −0.065 and 1.

As a result, ΔP and transitional probability are strongly correlated. Table 3
shows that the correlation is almost perfect, reaching 0.999 (Person correlation
coefficient calculated in R). The table further illustrates that such very strong
correlations between measures of collocation strength are rare. These findings
raise the question whether ΔP has any additional value compared to transitional
probability.
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Figure 2: Correlation between the ΔP adjustment factor (i.e. c/(c+d)) and its components,
calculated for all bigrams in Alices’s Adventures in Wonderland. Letters in the formula refer to
those used in Table 1.
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2.3 Previous applications of ΔP in cognitive corpus linguistics

Despite the fact that there are tools such as GraphColl (Brezina et al. 2015) and Coll.
analysis (Gries 2014) which calculate both ΔP and more conventional measures of
collocation strength for the user, surprisingly little work discussing ΔP has been
published (but see Schmid and Küchenhoff 2013; Gries 2015a; Gries 2015b). To date,
Wahl (2015) appears to be the only study which explicitly contrasts the performance
of ΔP with that of other predictors in a corpus-based analysis.

Wahl (2015) compares six measures of collocation strength in order to determine
which best predicts intonation unit boundaries. His study is based on the assump-
tions that (1) strong collocations are stored as holistic chunks in the mind, and (2)
there is a link between these chunks and intonation units in speech, i.e. that speakers
do not split onemental unit into several intonation units (Wahl 2015: 192–193). It thus
follows that the more strongly two words collocate, the more likely they are mentally
chunked and the less likely an intonation unit boundary should fall between them.

Table 3: Pearson product-moment correlations between different measures of collocation
strength (calculated in R).

TPfor. TPba. MI G ΔPfor. ΔPba.

Freq. −. . −. . −. .
−. −. −. . −. −.

TPfor. −. . . . −.
−. . . . −.

TPba. . . −. .
. . −. .

MI . . .
. . .

G . .
. .

ΔPfor. −.
−.

Notes: Calculations are based on the entire corpora. Upper and lower values represent results
for Alice’s Adventures in Wonderland and Moby Dick, respectively. Formulae for all measures of
collostruction strength are provided in Section 3. (Abbreviations: Freq.: frequency; TP: transi-
tional probability; MI: Mutual Information score; G: Lexical Gravity G; for.: forward; ba.:
backward.)
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Wahl (2015: 198, 200, 202) calculates the t-score, mutual information, log likelihood
aswell as ΔPforward, ΔPbackward and ΔPmaximum for 32,000 two-word collocationswhich
are interrupted by an intonation unit boundary and 168,000 two-word collocations
which occur within the same intonation unit in the Santa Barbara Corpus of Spoken
American English.Wahl (2015: 209) finds thatΔPforward only correctly predicts 0.1%of
intonation unit boundaries, while ΔPbackward predicts 8.2% correctly – a similar
performance to that of the bidirectional measures used in his study. A second
study confirms that there is a strong positive correlation between ΔPbackward and
the likelihood of collocations being part of the same intonation unit (Spearman’s
rho=0.97). In the case of ΔPforward, however, the correlation is weak and actually
negative (rho=−0.24), confirming the “aberrant behaviour” of this measure (Wahl
2015: 213). Drawing on Onnis and Thiessen (2013), Wahl (2015: 209) concludes that
“the leftward inter-word relationship is typically the more predictive direction in
languages like English”, the reason being that “large open classes of content words
are more predictive of small numbers of closed-class function words that precede
them than vice-versa” (Wahl 2015: 209).

Thus, the results suggest that only ΔPbackward has any practical value in
corpus-based approaches to the processing of English. Unfortunately, Wahl does
not address the other question at hand, namely whether ΔP performs better than
transitional probability. The following section tests this question by using both
ΔP and a set of further measures of collocation strength to predict the location of
hesitations in spoken English. The relationship between collocation strength and
hesitation placement should be the same as that described by Wahl for intona-
tion units: the stronger two words collocate, the more likely they are mentally
chunked (or strongly connected) and the less likely a hesitation, such as um or
like, should be placed between them.3

3 Data and method

3.1 The corpus

The following analyses are based on the Switchboard NXT corpus of American
English (NXT Switchboard Corpus Public Release 2008; Calhoun et al. 2010).

3 If strong collocations are unlikely to be split by either intonation unit boundaries or hesita-
tions, it follows that both should be more likely to fall where collocations are weak(er). These
(expected) similarities in the locations of intonation unit boundaries and hesitations should
lead to an observable correlation between the two and, indeed, we have some evidence that this
is the case (cf. Clark and Fox Tree 2002).
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This subset of the larger Switchboard corpus (Godfrey et al. 1992) comprises
annotated transcripts of 642 telephone conversations. The callers are previously
unacquainted adults representing all dialect areas of the United States who
converse about a wide variety of topics. The corpus totals roughly 830,000
words. The quality of the part-of-speech (POS)-tagging and the time alignment
of the transcript make the corpus ideally suited for the present purpose.4

3.2 Hesitations

The set of hesitations which were analysed consists of unfilled pauses, the fillers
uh and um as well as the discourse markers well, like, you know and I mean.
These discourse markers were included because it has been shown that among
other functions, they can be used to mark ongoing lexical and content search or
to announce repair sequences (cf. Jucker 1993: 447; Müller 2005: 189; Levey
2006; Fung and Carter 2007: 418). Unfilled pauses were calculated from the
given start and end times of words in Switchboard NXT. Based on Goldman-
Eisler (1968: 12), pauses shorter than 0.2 s were not considered discontinuities
and therefore disregarded. The maximum pause length considered for analysis
was 1 s, because beyond this limit chances increase that pauses are no hesita-
tions, but actually due to the speaker being interrupted. Repetitions, self-correc-
tions and drawls were excluded for the sake of data homogeneity.

3.3 Method

The analysis is limited to hesitations placed within three common types of
prepositional phrases which have previously been analysed by Maclay and
Osgood (1959). This restriction to comparable contexts allows for analyses
which go beyond simple comparisons of fluent versus hesitant collocations in
that it allows for comparisons of the competing forces in a given syntactic
context.

Table 4 shows the phrase types considered for analysis and the number of
tokens per phrase. The scripting language R (R Development Core Team 2009)

4 I have occasionally met with skepticism concerning the calculation of word and string
frequencies in smallish corpora, yet Wahl (2015: 198–199) finds that studies similar to the
present one yield the same results whether frequencies are derived from smaller or larger
corpora. Furthermore, larger spoken corpora are often not as accurately POS-tagged and thus
provide a different source of noise.
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was used to extract all instances of these phrases from the data which were
either preceded or interrupted by a hesitation. The word preceding each phrase
was also extracted and will be referred to as “X”. Phrases containing a hesitation
in more than one position were excluded. Figure 3 shows that hesitation place-
ment varies and that there is no universally preferred location.

In a second step, R was used to calculate collocation strengths. For this
purpose, all hesitations listed in Section 3.2 were removed from Switchboard
NXT, because testing the hypothesis requires us to know the collocation strength
of, for instance, about baseball, but not the strengths of about uh and uh base-
ball. Furthermore, the corpus was converted to lower case. POS-tags and infor-
mation about sentence boundaries were kept, but any further markup, including
punctuation marks, was excluded. Maintaining sentence boundaries not only
ensured that only two-word pairs occurring within the same sentence were

Table 4: Phrase types and number of data-points.

Phrase type Example Tokens

Prep Noun about baseball 

Prep Det Noun of the cowboys ,
Prep Det Adj Noun in a nice neighbourhood 

1 2

Preposition Noun
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pause
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Figure 3: Distribution of hesitations across prepositional phrases. “1” indicates placement
before the first word in the phrase (i.e. the preposition), “2” means placement before the
second word, etc.
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statistically treated as collocations, but also that collocation strengths were
never calculated across turn boundaries.

3.4 Measures of collocation strength

In addition to ΔP, the following measures were selected. All of them were
calculated for immediately adjacent two-word strings (bigrams). The formulae
below refer to the cell names of Table 1 in order to better illustrate that measures
are based on different sections of the table and thus on different proportions of
available information.

Frequency = a (5)

Co-occurrence frequency is the measure that relies on the fewest assumptions. It is
commonly used as a simple measure of chunking strength (cf. e.g. Bybee 2007a).

Transitional probability forward =
a

a + b
(6)

Transitional probability backward =
a

a + c
(7)

Forward transitional probability measures how likely the first word is to be
followed by the second, while backward transitional probability measures how
likely the second word is to be preceded by the first. Due to these two perspec-
tives being separated into two distinct measures, transitional probabilities are
referred to as unidirectional (just like ΔP). They are frequently employed in
cognitive corpus linguistics (cf. e.g. Gregory et al. 1999; Kapatsinski 2005; Tily
et al. 2009). However, their use is criticised by Ellis and Ferreira-Junior (2009:
194; see also Wahl’s [2015: 204] discussion of their arguments) who argue that
Rescorla’s (1968) experiments in classical conditioning show that successful
conditioning not only depends on the chance of a stimulus being followed by
a specific event (as represented by transitional probabilities), but also on the
chance of the event occurring without the stimulus (which is incorporated in
ΔP). In other words, Ellis and Ferreira-Junior argue that ΔP is a much better
predictor of associative learning than transitional probability. Consequently, ΔP
should also be a better predictor of collocation strength. Yet, as shown in
Section 2.2, we also know that there is only a marginal difference between the
two measures when calculated on the basis of corpus data.

Mutual Information = log
a

ða+ bÞ � ða+ cÞ
a+ b+ c+ d

 !
(8)
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The Mutual Information score (MI) assesses how strongly two words attract by
comparing their actual co-occurrence rate to a chance co-occurrence rate
(cf. Oakes 1998; Manning and Schütze 1999). It is a bidirectional measure
because, unlike transitional probability and ΔP, it takes associations from left
to right as well as from right to left into account. Gries and Mukherjee (2010:
527–528) point out that MI has a potential shortcoming: due to syntactic and
semantic restrictions, natural language is not based on chance rates of co-
occurrence, yet MI – like many other measures of collocation strength – is
based on this assumption.

Lexical GravityG= log
a � ða+ bÞtypes

a + b

� �
+ log

a � ða+ cÞtypes
a+ c

� �
(9)

Lexical Gravity G, devised by Daudaravičius and Marcinkevičienė (2004), reme-
dies MI’s shortcomings by comparing actual co-occurrence rates to the like-
lihood of co-occurrence among all possible combinations of words. To achieve
this, G makes use of type frequencies (all other measures of collocation strength
only use token frequencies), namely the number of types occurring after the first
word (here expressed by (a+ b)types) and the number of types occurring before
the second word (here expressed by (a+ c)types). Despite its comparatively com-
plex calculation, G correlates strongly with co-occurrence frequency (see
Table 3).

3.5 Statistical evaluation with random forests

The data will be analysed with the help of random forests using the cforest
command which is part of the party package for R (cf. Hothorn et al. 2006; Strobl
et al. 2007; Strobl et al. 2008). These algorithms “grow” trees through recursive
binary partitioning of the data. For each tree, the algorithm selects a random
subset of the data. It then uses the predictor variables to create “branches”, i.e.
subgroups of the data which are more homogeneous in terms of the dependent
variable than their parent groups (cf. Baayen 2008: 148–149; Strobl et al. 2009).

Figure 4 shows an exemplary tree, based on a random sample of 500
hesitations placed in or before phrases of the type “Preposition Determiner
Noun”. The algorithm partitions the data twice, resulting in a tree with three
terminal leaves. The first split indicates that hesitations are predominantly
placed at the prepositional phrase boundary (labelled position 1, see Node 2) if
the forward transitional probability from the word before the prepositional
phrase to the preposition (TPf.1) is 7.7% or lower. If it is higher, another factor
comes into play, namely Lexical Gravity G of the same pair of words (G.1). If this
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is low, hesitations are still predominantly placed at the prepositional phrase
boundary (see Node 4). If G, on the other hand, exceeds 0.768, hesitations
predominantly occur before the noun (labelled position 3, see Node 5).

The predominant outcome in a terminal node becomes the tree’s prediction
for all data-points in the node. This means that prediction accuracy is over 70% in
Node 2, but just under 50% in Node 5. Overall, it is 64.6%. Prediction accuracy
can be evaluated by comparing the numbers of correct and false predictions to the
results of a baseline classifier which simply generalises from the predominant
outcome to all data-points (cf. Baayen 2008: 153). Given that, in the present case,
59.6% of hesitations occur at the prepositional phrase boundary, the baseline
classifier predicts that all hesitations occur in this position, resulting in 298 correct
predictions. A chi-square test reveals that the tree’s predictions constitute a
significant improvement over the baseline (χ= 5.19, p < 0.05).

Large assemblies of such trees make up a forest. In contrast to the types of
trees which are reported as models in their own right, trees in the forest are
random, i.e. they each utilise only random subsets of the data and the predictors
(cf. Strobl et al. 2009: 332–333) and may thus come to very different results. The
overall prediction for each data-point is then determined by vote. Each tree

TPf.1

p < 0.001

1

0.077 > 0.077

Node 2 (n = 308)

1 2 3

0

0.2

0.4

0.6

0.8

1

G.1

p < 0.001

3

0.768 > 0.768

Node 4 (n = 94)

1 2 3

0

0.2

0.4

0.6

0.8

1

Node 5 (n = 98)

1 2 3

0

0.2

0.4

0.6

0.8

1

Figure 4: Exemplary tree based on a random 500-word subset of the “Preposition Determiner
Noun” data, generated with the ctree command in R.
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submits its prediction and the one with the most votes becomes the prediction of
the forest (cf. Strobl et al. 2009: 334). Users can set how many predictors may be
considered at any one time (mtry), how many trees they want in the forest (ntree)
and save the random seed, a number which controls all random parameters, to
ensure that a forest can be replicated.

Most analyses are not only interested in the number of correct predictions
but also in the strength of the link between the predictors and the dependent
variable. In a forest, the latter is obtained through random permutation of
predictors, which are then scored based on how much prediction accuracy
decreases after permutation. Negative scores indicate that the predictors caused
only noise (cf. Strobl et al. 2009: 335, 343).

Both individual classification trees and random forests can handle multi-
nomial outcomes and complex interactions as well as large numbers of predic-
tors (cf. Tagliamonte and Baayen 2012: 161, 171). Forests, however, are
particularly apt at handling collinear predictors due to the fact that the number
of competing predictors is limited and correlated predictors thus often do not get
to perform in a model together (cf. Strobl et al. 2009: 333).

For the present purpose, this procedure has a further advantage: binary
splitting of numeric data entails that the data are rank-ordered and that only the
rank – not the absolute value – matters, i.e. if a data-point ranks above the
splitting point, it is placed in the “above-split” group, whereas it would be
placed in the other group if it ranked below the splitting point. As we know,
transitional probabilities and corresponding ΔPs are almost perfectly correlated,
but the correlations are slightly lower when only ranks are considered, as can be
seen in Table 5. This means that rank ordering makes transitional probabilities
and ΔPs slightly more different. Therefore, if ΔP has any advantages over
transitional probabilities in a corpus-based study, this kind of analysis has a
greater chance of recognising them than a regression analysis.

Table 5: Correlations between transitional probabilities and ΔPs in the
“Preposition Determiner Noun” data set.

X Prep Prep Det Det N

TPfor. ~ ΔPfor. . . .
. . .

TPba. ~ ΔPba. . . .
. . .

Notes: Upper values were determined with the help of (parametric) Pearson
correlations, the lower values with non-parametric Kendall’s tau.
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4 Analyses and results

The following analyses assess how well the measures of association are able to
predict where a hesitation is placed. Hesitation placement in each of the three
phrase types is analysed separately. In all models, the dependent variable is the
location of the hesitation. Model parameters are set as follows. Forests consist of
5,000 trees each (i.e. ntree = 5,000) and are permitted to select from a random
subset of five predictors per split (mtry= 5).

Table 6 shows the number of correct predictions per model. As described in
Section 3.5, model performance is evaluated by comparing it to the number of
correct predictions of a simple baseline classifier, which predicts that all hesita-
tions in phrase type “Preposition Noun” are placed before the noun and that all
hesitations in the other two phrase types are placed before the preposition (see
Figure 3). Baselines and forests are compared with the help of 2x1-chi-square
tests in which baseline performance is defined as expected values and forest
performance as observed values. The tests show that all models perform very
highly significantly above the baseline, indicating that collocation strengths
have an influence on the placement of hesitations.

To investigate how much each predictor contributes to model performance, their
variable importance scores are compared. The three panels in Figure 5 sepa-
rately show the scores the predictors receive from each forest. I added a line at
the 0.01 mark in each panel, which serves two functions. First, it shows that
absolute values of variable importance cannot easily be compared across models
as they are influenced by a variety of factors (cf. Strobl et al. 2009: 336). Here,
the more predictors are considered in a model, the lower the scores. Second, in
all three cases there appears to be a gap around the 0.01 mark which separates

Table 6: Prediction accuracy of the forest models.

n Baseline accuracy Model accuracy χ p

Prep Noun    . <.
.% .%

Prep Det Noun ,   . <.
.% .%

Prep Det Adj Noun    . <.
.% .%
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Figure 5: Variable importance scores.
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the bulk of the predictors from those which stand out as particularly good ones.
Table 7 lists the best predictors in each model in decreasing order of importance.
A closer look at the predictors in Table 7 reveals that they aremostlymeasures of the
strength of “X Preposition” collocations, i.e. collocation strengths at the preposi-
tional phrase boundary have a much greater influence on hesitation placement
than collocation strengths within the phrase. In this respect, the results from the
three trees are very homogeneous. Yet the measures of collocation strength which
stand out differ from model to model. In fact, each measure appears in the top
group in at least one of the models, giving a first indication that all of them have
their merits.5 We can now address the hypotheses in more detail.

Do ΔPs outperform corresponding transitional probabilities? Particularly for-
ward-directed ΔP and forward-directed transitional probability perform very simi-
larly, i.e. both appear in two of the lists of high performing predictors and both
perform well in the same syntactic environments. Yet, when there are larger
differences between these predictors, it is mostly ΔPwhich outperforms transitional
probability (evident in the two upper panels in Figure 5). The case of the backward-
directedmeasures is different, though, as they perform almost identically within the
phrase, but at the phrase boundary ΔP is consistently the better predictor. Thus, it
appears that the minimal differences between ΔPs and transitional probabilities
under some conditions suffice to bring about a statistical advantage for the former.

Is ΔPbackward a better predictor than ΔPforward? Contrary to Wahl’s results,
ΔPbackward does not consistently outperform ΔPforward. In fact, it is more often the
case that ΔPforward is the better predictor. Surprisingly, whether backward-

Table 7: List of predictors receiving the best variable importance scores in each model.

Prep Noun Prep Det Noun Prep Det Adj Noun

Predictor Var. Imp. Predictor Var. Imp. Predictor Var. Imp.

MIXPrep . FrequencyXPrep . MIXPrep .
ΔPfor.XPrep . GXPrep . ΔPba.XPrep .
TPfor.XPrep . TPfor.XPrep . FrequencyXPrep .
ΔPba.XPrep . ΔPfor.XPrep . GDetAdj .

MIXPrep . GXPrep .
GDetNoun . GAdjN .

5 Some results at first appear to be a remnant of the randomness of the forests, but this is not
the case. Forests of this size lead to very homogeneous results. Furthermore, the variable
importance scores reported here are corroborated by mean variable importance scores calcu-
lated across 50 forests per phrase type.
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directed or forward-directed ΔP performs well, depends not so much on the
particular collocation, i.e. its syntactic position, as on the entire phrase type.
Only in the model for “Preposition Determiner Adjective Noun” do we find that
ΔPbackward outperforms ΔPforward, namely where applied to the phrase boundary
and to collocations of the type “Preposition Determiner”.

Finally, we can address Gries’ (2013) call to pay more attention to direction-
ality effects. He points out that bidirectional measures like MI and G cannot pick
up imbalances in the relation between two words, such as the one between of
and course in the present data set: course is highly likely to be preceded by of.
Of, on the other hand, is not strongly attached to course. Only unidirectional
measures can pick up this imbalance, therefore unidirectional measures, such as
ΔP, might better reflect how such imbalanced contexts are processed. Yet there
is no evidence in the models that unidirectional measures are better predictors
of hesitation placement than bidirectional ones. Of all predictors measuring
collocation strength at the phrase boundary, MI consistently performs on par
or even better than ΔP and transitional probability. In two of the tree models, G
is also among the top group of predictors for this collocation. Furthermore, G
most accurately predicts the influence that collocations containing a content
word have on the hesitation process.

5 Discussion and conclusion

The analysis presented in this paper has shown that the placement of hesitations
in spontaneous speech correlates significantly with collocation strength. The
latter was operationalised by means of seven different statistical association
measures ranging from simple co-occurrence frequency via unidirectional mea-
sures – including relatively new ΔP – to bidirectional MI and G. The finding that
statistically stronger collocations are less likely to be uttered disfluently can be
interpreted as evidence for the usage-based tenet that there is a link between
usage and sequence storage.

Moreover, preliminary analyses showed that the larger the database, the
smaller the difference between ΔP and transitional probability. Moreover, even
when calculated for individual novels (which consist of much fewer words than
the average modern corpus), ΔP is little more than transitional probability
adjusted by at most seven percentage points. Yet, analyses of hesitation place-
ment showed that this minor difference between transitional probability and ΔP
in some circumstances suffices to bring about a statistical advantage for the
latter. In summary, the analyses provide a tentative indication that Ellis and
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Ferreira-Junior’s (2009) claim that ΔP is better suited to model associative
learning than transitional probabilities, can be transferred to the modelling of
speech production.

As ΔP is a directional measure, another focus of the present study was on
assessing whether both directions are equally predictive when modelling the
processing of English. As a point of comparison, I have drawn on Wahl (2015)
who analyses the placement of intonation unit boundaries – another production
phenomenon – based also on a usage-based model of language processing and
using a similar methodology. Wahl finds an extreme divergence between the
performance of ΔPbackward and ΔPforward. While the former performs on par with
bidirectional measures in his analysis, the latter turns out to be a very poor
predictor. He interprets his results as corroborating Onnis and Thiessen’s (2013)
finding that backward associations are more informative in English than forward
associations, because, in English, typically a closed class item is followed by an
open-class item (Wahl 2015: 204–205, 214).

In language, closed classes are typically small(ish), but contain very versatile
elements, which co-occur with a large variety of different words. Open classes, on
the other hand, are typically large, with members that are more restricted in use.
Therefore, if we know a function word, like a preposition or a determiner, it is still
difficult to guess which content word, e.g. noun, will follow, i.e. forward transi-
tional probability will be low. If we are given a noun, on the other hand,
predicting the element preceding it is typically much easier, i.e. backward transi-
tional probability will be higher. Additionally, we have reason to assume that
planning in these contexts is also done from right to left as speakers might plan
heads of noun phrases before any other words in the phrase.

Based on this reasoning, backward-directed measures of collocation
strength should be good predictors of the chunkiness of collocations in which
the first word is a function word and the second is a content word or where the
first word is more frequent than the second. Table 8 shows that these two
conditions generally coincide.

Interestingly, the contexts where backward-directed measures perform well
in my data are not in the “first-frequent” group. In fact, first-frequent contexts
are where the backward-directed measures perform worst. We might conclude
that transitions so far into the phrase simply have no influence on the placement
of hesitations, but the excellent performance of G in these contexts is evidence
that they do.

Table 8 furthermore shows that generalising from first-frequent collocations
to all two-word pairs in English may be much too simplistic. In the given
prepositional phrase contexts, only a third of all collocations follows this pat-
tern, which may be a special property of this particular environment, but it
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cautions that the case may be similar in other contexts as well. Unfortunately,
Wahl does not take syntactic factors into account, so we do not know whether
syntax and the effects of different association measures interacted in his data.
Finally, even though we know that there is a correlation between intonation unit
boundaries and hesitation placement (cf. Clark and Fox Tree 2002), they may
depend on different factors.

Finally, ΔP – being unidirectional – was compared to G and MI – both
bidirectional. The results provide no evidence that any approach is generally
preferable. However, as mentioned above, G stands out as the measure most
accurately predicting the influence that collocations containing a content word
have on the hesitation process. This could be interpreted as evidence that G best
captures the processing of content words and their immediate surroundings. Yet
it must not be seen as an indication that any bidirectional measure is a better
predictor of chunking than a unidirectional one. The finding should rather be
attributed to the specific properties of G itself, because comparing, for instance,
G and ΔP is not just a question of comparing directionality and non-direction-
ality, but may also reflect the quantity of information contained in the measures,
as G uses contingency information besides frequency information while ΔP only
uses the latter.6

In conclusion, I propose that future studies rely on several measures, both
bi- and unidirectional, as a predictor’s performance depends hugely on the POS
it is applied to. Furthermore, this paper addressed only part of “the new ways of
studying collocations” proposed by Gries (2013: 159). For instance, the

Table 8: Types of collocations in the three data sets. Percentages indicate which word in the
collocation is generally the more frequent.

Type of collocation Prep. Noun Prep. Det. Noun Prep. Det. Adj. N.

X Preposition Second (.%) Second (.%) Second (.%)

Preposition Noun First (.%)

Preposition Det Second (.%) Second (.%)

Det Noun First (.%)

Det Adjective First (.%)

Adjective Noun .% vs. .%

6 I thank an anonymous reviewer for drawing my attention to this fact.
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performance of ΔP for longer collocations still needs to be assessed and com-
pared to that of other association measures such as the ones discussed here.
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